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Abstract—The exclusive bus lane (XBL) is one of the most 
popular bus transit systems in US. The Lincoln Tunnel utilizes 
an XBL through the tunnel in the AM peak period. This paper 
proposes a novel data-driven cooperative adaptive cruise control 
(CACC) algorithm that aims to minimize a cost function for 
connected and autonomous buses along the XBL. Different from 
existing model-based CACC algorithms, the proposed approach 
employs the idea of reinforcement learning (RL), which does 
not rely on accurate knowledge of bus dynamics. Considering 
a time-varying topology where each autonomous vehicle can 
only receive information from preceding vehicles that are within 
its communication range, a distributed controller is learned 
real-time by online headway, velocity, and acceleration data 
collected from system trajectories. The convergence of the pro­
posed algorithm and the stability of the closed-loop system are 
rigorously analyzed. The effectiveness of the proposed approach 
is demonstrated using a well-calibrated Paramics microscopic 
traffic simulation model of the XBL corridor. Simulation results 
show that the travel times in the autonomous version of the 
XBL are close to the present day travel times even when the bus 
volume is increased by 30%. 

Index Terms—Reinforcement learning, connected and au­
tonomous vehicles, cooperative adaptive cruise control, time-
varying topology 

I. INTRODUCTION 

THE Lincoln Tunnel is an 80-year-old, 1.5-mile-long 
tunnel that connects Weehawken, New Jersey and Man­

hattan, New York. It is one of the busiest crossings in the 
United States, carrying approximately 40 million vehicles in 
2016 [1]. It also serves as one of the major bus transit 
corridors that directly connects to the Port Authority Bus 
Terminal (PABT) in midtown Manhattan, New York. The 
Lincoln Tunnel Exclusive Bus Lane, known as the XBL, is 
a 2.5-mile contra-flow bus lane traveling along New Jersey 
Route 495, leading from the New Jersey Turnpike to the 
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Lincoln Tunnel [2]. The XBL acts as a one-lane isolated 
contraflow bus lane that operates only between 6-10AM every 
day and is separated from the oncoming traffic by cylindrical 
traffic delineators [3]. The XBL caters to an average of 1850 
buses daily during peak hours (22% of peak-hour vehicles) 
and carries approximately 89% of peak-hour customers in the 
Lincoln Tunnel; see [2], [4]. 

While the XBL is one of the most successful and productive 
bus rapid transit systems in the United States, the practical 
capacity of the XBL has often been exceeded during morning 
peak hours, resulting in considerable delays for the buses 
[5]. Fig. 1 shows an example of the congestion along the 
XBL. The Port Authority of New York and New Jersey 
(PANYNJ) predicts that the demand of daily buses using 
PABT will increase by 15% by 2040. This increasing demand 
urges the agencies to explore supply/demand strategies that 
can “increase or manage capacity along the Lincoln Tunnel 
Corridor - either by improving corridor operations or PABT 
facility operations [4]”. A prior study completed in September 
2016, entitled “Trans-Hudson Commuting Capacity Study”, 
evaluates various strategies to meet the projected 2040 trans-
Hudson commuter demand, taking into account the conceptual 
planning of PABT replacement [4]. This prior study suggests 
opportunities to develop new technologies, especially con­
nected and automated vehicle technologies [6], to improve 
the operational efficiency of the Lincoln Tunnel corridor by 
dispatching in real time. The use of platooning buses via 
adaptive cruise control (ACC) or cooperative adaptive cruise 
control (CACC) technology could significantly increase the 
throughput of the existing XBL without any huge investment. 

ACC is an enhancement of the classical cruise control 
algorithms that can reduce driver workload and fatigue. It 
automatically regulates the dynamics of individual vehicles 
by measuring the headway and velocity via on-board sensors, 
such as radars, lasers and video cameras. It is an example of 
application of real-time control techniques on traffic systems 
[7]–[9]. Ozbay et. al [10], [11] study the feasibility of au­
tomating the exclusive bus lane (XBL) in the Lincoln tunnel 
corridor using three different adaptive cruise controllers de­
veloped in Paramics simulation network, namely P controller, 
PI controller, and PID controller. These elementary linear 
controllers are achieved by adjusting the speed of the bus 
based on its speed and spacing measurements with respect 
to the bus ahead. The performance of each controller and the 
travel times are examined, and the results are compared with 
the simulation model that describes the traffic scenarios in 
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Fig. 1. Bus in the XBL (Taken in June, 2017) 

2005 with approximately 1,700 buses on the XBL during the 
peak period and a peak hour volume of 730 buses [3], [10]. 
The results have shown that all three controllers performed 
much better than the human driver in the simulation model. 
In addition, all the three controllers are able to stop the bus 
quickly and safely in the simulations in case of emergency. A 
qualitative cost analysis indicates that automation of the bus 
lane is beneficial. 

CACC is an extended version of ACC. In comparison 
with the sensor-based ACC, the CACC technology has a 
longer communication range that enables it to alert drivers 
about potential collisions. This is more beneficial in some 
blind intersections. Additionally, CACC usually considers a 
longitudinal platoon of vehicles, and well-formed platoon with 
smaller time headway manipulated by CACC can further 
reduce aerodynamic drag, which leads to fuel saving. 

In the last decade, several vehicular platoon control al­
gorithms have been developed through model-based control 
theory. For instance, an optimal connected cruise control 
algorithm has been developed for a platoon of mixed human-
driven and autonomous vehicles [12]. Considering the state 
and input constraints, the model predictive control (MPC) 
has been employed to design CACC algorithms for vehicular 
platoons [13], [14]. The robust MPC strategy has been utilized 
for CACC design in the presence of model uncertainties [15]. 
The effect of delay on the platoon performance has also been 
studied [12], [16], [17]. In our previous work [18], a data-
driven adaptive optimal control approach has been proposed 
for a platoon of human-operated and autonomous vehicles in 
the presence of input delay. 

The effectiveness of CACC on safety, traffic flow, and the 
environment has also been tested in different traffic scenar­
ios with human-driven and autonomous vehicles [19]–[23]. 
Shladover et al. have compared the impact of CACC and ACC 
on freeway traffic flow [21]. They claim that ACC marginally 
changes the lane capacity and that, while CACC can signifi­
cantly improve the capacity. Moreover, the capacity increases 
as the penetration of autonomous vehicles increases. This is 
consistent with the conclusion drawn in [20]. The authors of 
[20] study a freeway lane drop as a shockwave induced by a 
disturbance limits the traffic capacity. They disclose the fact 
that a high CACC-penetration rate (> 60%) can improve traffic 

flow while mitigating the serious shockwave effect, especially 
in the condition of high traffic volume. This is attributed to the 
increased average speed, dramatic reduction of the number of 
shock waves, and low speed variance. The influence of CACC 
on both traffic congestion and environment is investigated in 
[22]. Specifically, they explore the possibility of integrating 
both the CACC and intelligent traffic signals. The benefits of 
implementing the integrated algorithm are expected to reduce 
the traffic delay by up to 91% and reduce fuel consumption 
by up to 75%. 

Although CACC has been extensively studied by many 
researchers, there are still some open issues when one im­
plements this technology in connected buses on XBL. First, 
the existing CACC methods are usually model-based. The 
first step in the model-based control method is often building 
a mathematical model for the plant in question. However, 
system modeling often involves modeling errors. A controller 
designed based on an inaccurate model may destabilize the 
vehicle system, which threatens the safety of the autonomous 
buses and their surrounding traffic. Robust control can stabilize 
the vehicle system if there are errors or uncertainties in the 
model, but this compromises the system’s transient response. 
Second, in order to ameliorate the transient performance and 
to reduce the fuel usage of the autonomous buses, one hopes 
to design an optimal controller through minimizing some 
predefined cost functions. Nevertheless, a common feature of 
most optimal control methods is that they rely on the accurate 
knowledge of the system model. Last but not least, in the 
framework of connected vehicles and CACC, each vehicle 
is supposed to receive information from preceding vehicles 
(active vehicles) who stay within the communication range. 
Notice that the number of active vehicles usually varies since 
the relative distances between buses change with time. This 
renders the communication topology as time-varying, which 
is usually a challenge for the adaptive/optimal control design. 

In order to overcome these technical obstacles, this pa­
per proposes a novel data-driven distributed control strategy 
for connected and autonomous buses on XBL. To be more 
specific, the proposed control strategy employs the idea of 
reinforcement learning (RL) [24]–[32]. RL is an active re­
search branch of artificial intelligence, which is viewed as a 
practically sound data-driven optimal control approach as well. 
The main feature of RL is that it is able to approximate the 
optimal control strategy and the corresponding cost function in 
an iterative fashion, without accurate knowledge of the vehicle 
dynamics. This feature helps overcome two main drawbacks 
of the traditional dynamic programming, i.e., the curse of 
dimensionality [33] and curse of modeling [34]. 

The contributions of this paper are listed as follows. 
1) A novel data-driven CACC method for connected and 

autonomous buses is proposed through RL. This is dif­
ferent from most existing model-based CACC methods 

[12]–[14], [16], [17] in that the former essentially 
relies on the collected online headway, velocity, and 
acceleration data. The proposed RL algorithm can be 
used to learn the optimal controllers with a satisfactory 
transient response in the absence of prior knowledge of 
vehicle dynamics. 
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2) This paper distinguishes itself from our previous work 
[35], [36] through combining the ideas of RL and dis­
tributed control [37]. Compared with centralized control, 
distributed control strategies do not rely on the assump­
tion that each vehicle can communicate with a central 
location and share information by a fully connected 
network, which reduces communication cost. Also, it is 
widely accepted that centralized control is fragile as it 
requires the information of all the agents in the network. 
In this sense, the distributed control strategy is more 
robust to communication failure or information loss, as 
it uses only the information of neighboring agents within 
the communication range. 

3) To the best of our knowledge, the time-varying topology, 
or more accurately the state-dependent connectivity [38], 
is considered for the CACC design for the first time. 
The connectivity of vehicles depends on the relative dis­
tance and communication range, making this approach 
more reflective of real-world conditions. The data-driven 
controller design is constructive, while the closed-loop 
system stability and optimality analyses are rigorously 
completed in this scenario. 

The remainder is organized as follows. In Section II, we 
develop a Paramics micro-traffic simulation model, which is 
calibrated by real traffic data. In Section III, the data-driven 
CACC is designed along with stability and optimality analyses. 
The traffic simulation results are included in Section IV. 
Concluding remarks and future work are contained in Section 
V. 

Notations. Throughout this paper, C− stands for the open 
left-half complex plane. | · | represents the Euclidean norm for 
vectors and the induced norm for matrices. ⊗ indicates the 

T T TKronecker product operator and vec(A) = [a1 , a2 , · · · , a ]T ,m

where ai ∈ Rn are the columns of A ∈ Rn×m . 
Rm×mFor a symmetric matrix P ∈ , vecs(P ) = 

[p11, 2p12, · · · , 2p1m, p22, 2p23, · · · , 2pm−1,m, pmm]T ∈ 
R 1 

2m(m+1). For an arbitrary column vector 

Paramics is a micro-traffic simulation software that is widely 
used for the study of traffic operations. The software allows 
users to setup vehicles, traffic signals, ramps, and so forth. 
Fig. 2 shows the network simulation model that is built in 
Paramics. The Paramics model simulates the one-lane bus-only 
XBL from 6AM to 10AM. The one-lane structure restricts any 
merge, split or lane changing behaviors for buses. There are 
no interactions between buses and general traffic on the XBL. 

First, we develop the skeleton network by placing nodes 
and connecting these nodes using links. Other stages include 
assigning priorities at junctions, defining vehicle types, setting 
restrictions and demands. After that, we calibrate the traffic 
network such that the simulation results match traffic data 

Fig. 2. Paramics Model of the Lincoln Tunnel Corridor [10] 

extracted from the Lincoln Tunnel. The Origin-Destination 
(O-D) matrices are estimated for 15-minute intervals based 
on the traffic volumes obtained from New Jersey Department 
of Transportation and New York City Department of Trans­
portation, and the toll plaza demand data [39]. The current 
number of buses utilizing XBL is obtained from PANYNJ’s 
official website with 1850 buses during peak period [2]. Taking 
advantage of buses equipped with GPS devices, the travel 
time and headway information of buses are extracted via New 
Jersey Transit (NJT) “MyBus Now” platform [40], a real-time 
service information system that provides estimated vehicle 
arrival times and map locations for NJT buses. A web scraper 
that behaves as a ”virtual sensor” [41] is developed to retrieve 
real-time bus schedules and delays for the corresponding bus 
lines from ”MyBus Now” [42]. More details about the virtual 
sensor methodology can be found in [41]. One month of bus 
data (Apr. to May, 2017) are processed and cleaned. The 
model is then calibrated by modifying certain features such 
as reaction times and safe headways so that it replicates the 
existing traffic conditions. Ten simulation runs are performed v ∈ Rm , |v|P stands for vT Pv, and vecv(v) = 

1 , v1v2, , v1vm, v with different random seeds so that the stochasticity associated 2 2 2 
2 , v2v3, · · · , vm−1vm, v ]T ∈m[v · · · 

with the microsimulation model can be minimized. Geoffrey 1 
2m(m+1)R . λM (P ) and λm(P ) denote the maximum 

E. Heavers (GEH) statistic is used to compare the field bus 
volumes with simulation bus volumes. Ten simulation results 

and the minimum eigenvalue of a real symmetric matrix P , 
respectively. 

II. MICROSCOPIC TRAFFIC SIMULATION MODEL OF XBL 

with different random seeds show that 91% observed GEHs 
were less than 5. The difference between field travel times 
and model travel times remains less than 10% on all time 
intervals except two occasions when it increases to 11%−13%. 
Moreover, the mean of model travel time µM is selected to 
compare with the mean of field travel time µF with two-
sample t-test. It shows that the hypothesis µM = µF is 
accepted at 5% significant level. These results indicate that 
the calibrated network is consistent with that of the field traffic 
conditions. More information on issues related to large scale 
traffic calibration in general can be found in the previous study 
[43]. Note that the travel times collected through NJT MyBus 
Now application are for buses traveling from the teardrop on 
the New Jersey side (entry point of XBL, refer to Fig. 2 to 
PABT at Manhattan. The same entering and exit points are 
used to collect travel time from the micro-simulation model. 
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irCommunication Range of Vehicle #i:

Fig. 3. Vehicle platoon with time-varying topology 

III. CONTROLLER DESIGN 

In this Section, we first present the formulation of the CACC 
problem. Then, we propose a novel data-driven distributed 
controller design algorithm. The stability and optimality of 
the closed-loop system are rigorously analyzed. 

Consider a platoon of n autonomous buses. Let hi be the 
headway of ith vehicle in the platoon, i.e., the bumper-to­
bumper distance between the ith vehicle and the (i − 1)th 
vehicle. Time headway [44] and constant spacing [45] are two 
main spacing policies in the CACC. This paper adopts the 
former policy since there are different speed limits in each 
snap of the road. The desired headway is chosen by h∗ 

i (t) = 
τvi(t) + h0, where τ is the time headway and h0 is named 
the standstill headway. Define Δhi(t) = hi(t) − h∗(t) andi 
Δvi(t) = vi−1(t) − vi(t). By [46], the dynamics of the ith 
vehicle can be described by 

ẋi(t) = Aixi(t) + Biui(t) + Dixi−1(t) (1) 

where ui represents the desired acceleration of vehicle i. For 
j = i − 1, i, xk = [Δhk, Δvk, ak]

T includes the headway and 
velocity errors, and the acceleration of vehicle k. The system 
matrices are ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 

0 1 −τ 0 0 0 0 
Ai = ⎣0 0 −1 ⎦ , Bi = ⎣ 0 ⎦ , Di = ⎣0 0 1⎦ 

− 1 Gi0 0 0 0 0Ti Ti 

with Gi the system gain and Ti the system time constant. 
Assume there is a fictitious vehicle running before the 

leading vehicle in a constant velocity. In this setting, the state 
x1 of the leader in the platoon also satisfies the equation (1) 
with x0 ≡ 0. Given the system (1), define a time-varying 
digraph G(t) = {V, E(t)}. V = {1, · · · , n} is the node set. 
E(t) ⊂ V × V refers to the edge set. If the distance between 
vehicle i and k is smaller than the minimum between the 
communication range of vehicle k and i at time t, then the 
edge (k, i) ∈ E(t). Denote Ni(t) the set of all the nodes k such 
that (k, i) ∈ E(t). For instance, the set Ni(t) = {i − 1, i − 2}
at time t since there are only two preceding vehicles staying in 
the communication range of vehicle i in Fig. 3. Interestingly, 
this time-varying topology depends on the system state, which 
is named state-dependent connectivity [38]. Moreover, the 
commuication topology is unidirectional in this paper, which 
means each bus is only able to receive its preceding vehicle 
in the communcation range. 

One of control goals in this paper is to let the headway and 
velocity errors and acceleration of each bus asymptotically 

converge to zero, i.e., lim xi(t) = 0 for i = 1, 2, · · · , n. In 
t→∞ 

order to improve the transient response of the system, one can 
design an optimal controller through minimizing the following 
cost function  ∞ 

J = (x T Qx + u T Ru)dτ (2) 
0 

where Q = blockdiag(Q1, Q2, · · · , Qn), R = 
T T T ]Tblockdiag(R1, R2, · · · , Rn), x = [x1 , x2 , · · · , x ,n 

and u = [u1, u2, · · · , un]
T . By linear optimal control theory 

[47], there exists an optimal controller is u = −K∗ x such 
that the cost function (2) achieves its minimum J∗ = xT P ∗ x. 
However, this optimal controller is centralized, which cannot 
be implemented in the vehicular platoon with state-dependent 
connectivity condition. Taking this scenario into consideration, 
if all the system matrices are available, then one can design 
the following model-based suboptimal distributed controller 
for each autonomous bus: 

ui(t) = −Ki 
∗ ζi(t) (3) 

where  1 
ζi(t) = (xi(t) − xk(t)). (4)

|Ni(t)|
k∈Ni(t) 

In (4), |Ni(t)| denotes the cardinality of the set Ni(t). If 
Ni(t) = ∅, we split the platoon by letting vehicle i be a 
new leader operating in a constant speed. It is merged to the 
previous platoon until time Ti when Ni(Ti) = ∅. 

Choosing weight matrices such that Qi, Ri > 0, the desired 
control gain for the ith vehicle can be computed by 

K ∗ = R−1BT P ∗ (5)i i i i 

where matrix P ∗ indicates the solution to the following i 
algebraic Riccati equation 

∗ AT
i Pi + Pi 

∗ Ai + Qi − Pi 
∗ BiR

−
i 
1Bi

T P ∗ = 0. (6)i 

However, the model-based control approaches (3) are hard 
to implement since identifying the system dynamics accurately 
is usually a challenging task. Also, it is almost impossible 
to know the system matrices of all the vehicles considering 
different types and conditions of vehicles on the road. We will 
propose a data-driven control approach to learn the distributed 
controller (3) without knowledge of system matrices Ai and 
Bi. 

A. Data-Driven CACC Design 

To begin with, we rewrite the system (1) as 

ẋi = (Ai − BiKij )xi + Bi(Kij xi + ui) + Dixi−1 (7) 

where, for j = 1, 2, · · · , the control gain Kij is a stabilizing 
control gain. 

Let Pij be the unique solution to the following Lyapunov 
equation 

(Ai − BiKij )
T Pij + Pij (Ai − BiKij ) 

+ Qi + KT (8)ij RiKij = 0, 
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and Ki,j+1 be updated by 

Ki,j+1 = Ri 
−1Bi

T Pi,j . (9) 

Along the solutions to (7), by equations (8)-(9), it follows 
that 

T	 T xi (t + δt)Pij xi(t + δt)−xi (t)Pij xi(t) 
t+δt
 

T
 = xi [(Ai − BiKij )
T Pij + Pij (Ai − BiKij )]xidτ 

t 
t+δt 

+ 2	 (ui + Kij xi)
T Bi

T Pij xidτ
 
t
 
t+δt
 

T
+ 2	 xi−1Di
T Pij xidτ
 

t
 
t+δt
 

T
 = − xi (Qi + KT 
ij RiKij )xidτ
 

t
 
t+δt
 

+ 2	 (ui + Kij xi)
T RiKi,j+1xidτ
 

t
 
t+δt
 

T
+ 2	 xi−1Di
T Pij xidτ. (10) 

t 

By Kronecker product representation, we obtain   
T	 T T xi (Qi + KT	 ⊗ xi )vec Qi + KT 

ij RiKij )xi = (x	 ij RiKij ,i   
T T T xi−1Di

T Pij xi = (xi ⊗ xi−1)vec Di
T Pij ,
 

T T
(ui + Kij xi)
T RiKi,j+1xi = [(x ⊗ xi )(I ⊗ KT 

i ij Ri) 
T T+ (x ⊗ ui )(I ⊗ Ri)]vec (Ki,j+1) .i 

Moreover, for any two vectors a ∈ Rna , b ∈ Rnb and a 
sufficiently large number s > 0, define 

δa =[vecv(a(t1)) − vecv(a(t0)), · · · , 
na(na+1) 

2vecv(a(ts)) − vecv(a(ts−1))]
T ∈ Rs× ,  	  T 

t1 t2 ts 

Γa,b = a ⊗ bdτ, a ⊗ bdτ, · · · , a ⊗ bdτ . 
t0 t1 ts−1 

∈ Rs×nanb 

(10) implies the following linear equation ⎡ ⎤ 
vecs(Pij ) 

(j)	 (j)⎣Ψi vec( Ki,j+1) ⎦ = Φi (11) 
vec	 DT 

i Pij

where 

Ψ
(j) 

=[δxi , −2Γxixi (I ⊗ KT (I ⊗ Ri),ij Ri) − 2Γxiui 

]∈ Rs×18 
i 

− 2Γxixi−1 ,   
Φ

(j) 
= − Γxixi vec Qi + KT ∈ Rs .i	 ij RiKij

The full column rank of Ψ(j) is guaranteed under some mild i 
conditions [48], [49] similar to persistent excitation, which 
may be satisfied by adding some exploration noise into the 
control input. In this way, the solution to (11) can be uniquely 
obtained via ⎡ ⎤
 

vecs(Pij )    T 
 −1   T


(j) (j) (j) (j)⎣ vec( Ki,j+1) ⎦ = Ψi Ψi Ψi Φi (12) 
vec Di

T Pij

Now, we are ready to propose our data-driven CACC 
algorithm, Algorithm 1 to approximate the control gain K∗ 

in the distributed CACC (13). 

Algorithm 1 Data-Driven CACC Algorithm 
1:	 i ← 1 
2:	 repeat 
3:	 Apply an initial control policy ui = −Ki0xi + ei with 

exploration noise ei and Ki0 a stabilizing control gain. 
4: j ← 0 
5: repeat 
6:	 Solve Pij and Ki,j+1 from (12) via online input-

state data. 
7: j ← j + 1 
8:	 until |Pij − Pi,j−1| < Ei with Ei a small positive 

constant. 
9: j∗ ← j 

10: Obtain the following suboptimal controller 
† u	 = −Ki,j∗ ζi (13)i 

11: i ← i + 1 
12: until i = n + 1 

The convergence of the proposed Algorithm 1 is analyzed 
in the following. 

Theorem 1. For i = 1, 2, · · · , n, the sequences {Pi,j }∞ andj=0 
∗{Ki,j }∞ computed through Algorithm 1 converge to P andj=1	 i 

K∗, respectively. i 

Proof. For all i = 1, 2, · · · , n, it is checkable that matrices Pij 

and Kij that are uniquely determined by (12) solve equations 
(8)-(9). By reference [50], as the iteration j → ∞, matrices 

∗Pij and Kij solving from (8)-(9) converge to matrices P andi 
K∗, respectively. This immediately implies the convergence of i 
sequences {Pi,j }∞ and {Ki,j }∞ determined by (12). The j=0 j=1 
proof is thus completed. 

Remark 1. Note that Algorithm 1 employs the idea from 
the policy iteration method in reinforcement learning; see 
[25]. The step 6 includes both policy evaluation and policy 
improvement. 

B. Stability and Optimality Analysis 

We will analyze the stability of the closed-loop system in 
the following theorem. 

Theorem 2. The origin of the system (1) in closed-loop 
with (13) learned by data-driven control Algorithm 1 is an 
exponentially stable equilibrium. 

Proof. For the vehicle i, the closed-loop system can be de­
scribed in the following form 

1 
ẋi = (Ai − BiKi,j∗ )xi + BiKi,j∗ xk + Dixi−1|Ni(t)|

k∈Ni(t) 

where, given a small enough constant Ei, the matrix Ai − 
BiKi,j∗ is always a Hurwitz matrix. 
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For the leading vehicle, we can always find β1, λ1 > 0 such 
that 

(A1−B1K1,j∗ )t|x1(t)| = |e x1(0)| ≤ β1e λ1t|x1(0)| 

due to the fact that x0 ≡ 0. 
For the second vehicle, we can always find β2, λ2 > 0 such 

that 
(A2−B2K2,j ∗ )t|x2(t)| =|e x2(0)| + |B2K2,j∗ + D2|

t 
(A2−B2K2,j ∗ )(t−τ )| e	 x1(τ)dτ |  

λ2t   T T 
fT  ≤β2e  x1 (0) x2 (0)  . 

Similarly, we can observe that, for i = 2, 3, · · · , n, there 
always exist βi > 0, λi > 0 such that  	   

λit  T T T 
fT  |xi(t)| ≤ βie  x1 (0) x2 (0) · · · x (0)  i 

which directly implies that the closed-loop system is exponen­
tially stable. The proof is completed. 

The following theorem compares the minimum cost J∗ = 
xT (0)P ∗ x(0) with the cost J† associated with the distributed 
controller (13). 

Theorem 3. There exists a constant µ > 0 such that J† ≤ 
µJ∗ . 

Proof. Write the closed-loop platooning system in a compact 
form 

ẋ = Ac(t)x	 (14)  	 fTT T Twhere x = x x	 · · · x .1 2 n 
The exponential stability of this system has been shown 

in Theorem 2. Therefore, the state transition matrix Φ(τ, t) 
satisfies |Φ(τ, t)| ≤ βeλ(τ−t), ∀τ ≥ t ≥ 0. Let P †(t) =s ∞ 

ΦT (τ, t)Φ(τ, t)dτ . It is checkable that there exists some 
t 
c1, c2 > 0 such that c1|φ|2 ≤ φT P †(t)φ ≤ c2|φ|2, which 
implies that P †(t) is positive definite and upper bounded by 
some supt≥0 |P †(t)| < c3. The definition of P †(t) shows that 
it is symmetric and continuously differentiable. By the fact 
that ∂Φ(τ, t)/∂t = −Φ(τ, t)Ac(t), Φ(τ, τ) = I , and Leibniz 
integral rule, we have 

∞ 

Ṗ †(t) = 
∂ 

ΦT (τ, t)Φ(τ, t) dτ − ΦT (τ, τ)Φ(τ, τ) 
t ∂τ 

= − P †(t)Ac(t) − AT (t)P †(t) − I. (15)c 

Along the solutions of (14), from (15), we have 
∞ 

|x 2|dτ ≤ x T (0)P †(0)x(0) ≤ c2|x(0)|2 . 

Then, the cost J† is bounded above by 
∞2 

J† ≤ λM (Q) + n|R| max |Ki,j∗ | |x 2|dτ 
i 0 	  

2
c2 λM (Q) + n|R| (maxi |Ki,j∗ |)
≤ J ∗ 

λm(P ∗) 
:=µJ ∗ . (16) 

The proof is thus completed. 

Fig. 4. Paramics simulation architecture 

Fig. 5. Snapshot of buses on XBL in closed-loop with data-driven CACC 
controller, simulation in Paramics 

IV.	 MICROSCOPIC TRAFFIC SIMULATION RESULT AND 
ANALYSIS 

The proposed data-driven CACC Algorithm 1 is imple­
mented in the micro-traffic simulation. Similar to reference 
[35], the data-driven controller is programmed via application 
programming interface (API) provided by Paramics. The API 
allows users to override the existing car following and other 
driver behavior characteristics [51]. There are four kinds of 
interfaces, named getting a value from (QPG), setting a value 
in (QPS), overriding (QPO), extended (QPX). When we finish 
the simulation, we collect simulation data to compare the con­
trol performance of the proposed data-driven control algorithm 
with that of the manual control. Fig. 4 shows how the control 
Algorithm 1 is implemented in Paramics simulation. 

Note that the details of Paramics internal models are not 
exactly known by us. That is exactly why we use Paramics to 
validate the proposed data-driven idea. Fig. 5 is a snapshot 
of buses on XBL (with green shape) by using data-driven 
control Algorithm 1. These buses operate with roughly the 
same headway. 

Notice that Paramics uses its own micro-traffic model with 
a number of heuristic decision making rules for lane chang­
ing and exiting to mimic actual human decision making in 
practice. Hence, we let the default Paramics control method 
output the manual control performance. In order to minimize 
the stochasticity of the simulation model, five simulation runs 
are performed with different random seeds. 

For the purpose of simulation, the online position, velocity, 

0 
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Fig. 6. Histograms of velocity errors and spacing errors of buses without 
data-driven CACC control algorithm 
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Fig. 8. The comparison of learned value matrix Pij and the optimal value 
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Fig. 7. Histograms of velocity errors and spacing errors of buses with data-
driven CACC control algorithm 

and acceleration data of buses are collected to learn the value 
matrix Pij and control gain Kij with the vehicle index i and 
the iteration j. In order to test the convergence of Algorithm 1, 
a platoon of 4 buses is taken as an example. The comparison 
of learned value matrix Pij and corresponding optimal value 
matrix P ∗ (solving from ARE (6)) of the ith bus is depicted i 
in Fig. 8, while the comparison of learned control gain Kij

and the optimal gain K∗ is given in Fig. 9. It shows that the i 
stopping criterion for all the subsystems is satisfied in less 
than 15 iterations. 

In this experiment, the communication range is set as ri = 
300m. The desired time headway is τ = 1.25s. We test the 
effect of the platoon size on the travel time of autonomous 
buses. The result is illustrated in Tab. I with respect to different 
platoon size from p = 3 to p = 7. It is shown in the last row 

¯ ¯ ¯that the average travel time is ordered by T7 < T4 < T3 < 
¯ ¯T5 < T6. It is suggested that the platoon size is set as p = 4 

Fig. 9. The comparison of learned value matrix Kij and the optimal value 
matrix Ki 

∗

instead of a larger platoon size p = 7 since the former is able 
to reduce the computational load with only a slight increase 

¯of travel time, i.e., T4 − T̄7 = 0.016min. 
Fig. 6 shows histograms of velocity and spacing errors of 

the buses on the XBL lane under manual control mode, while 
Fig. 7 shows histograms under data-driven CACC Algorithm 
1. The velocity error distribution of both cases are bell-shaped.
The spacing errors of both cases tend to generate distributions 
skewed to the left. The standard variations of velocity and 
headway errors under manual control mode are 1.8493 and 
153.98, respectively. The standard variations of velocity and 
headway errors under CACC algorithm are 0.9799 and 127.23, 
both of which are smaller than that of manual control mode. 
The standard deviations of velocity and headway have been 
used as surrogate safety measurements (SSM) to analyze the 
traffic safety; see [52] and references therein. Hence, it implies 
that the CACC is able to potentially reduce the crash risk. 
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TABLE I 
TRAVEL TIMES Tp [MIN] UNDER DIFFERENT PLATOON SIZES p 

Time Period T3 T4 T5 T6 T7 

6 : 15 − 6 : 30 8.9047 8.9047 8.9043 8.9043 8.9107 
6 : 30 − 6 : 45 9.0507 8.9857 8.9887 8.9887 9.0013 
6 : 45 − 7 : 00 9.1167 9.0907 9.1400 9.1400 9.0810 
7 : 00 − 7 : 15 9.4367 9.5373 9.4943 9.5083 9.4953 
7 : 15 − 7 : 30 10.1927 10.3640 10.4190 10.4473 10.3123 
7 : 30 − 7 : 45 10.8710 10.7670 10.9080 11.0507 10.8750 
7 : 45 − 8 : 00 11.1727 11.1957 11.2217 11.3757 11.1053 
8 : 00 − 8 : 15 11.6953 11.6517 11.7110 12.0737 11.6443 
8 : 15 − 8 : 30 11.6193 11.6627 11.7420 11.8133 11.7963 
8 : 30 − 8 : 45 12.4987 12.4973 12.4570 12.6767 12.2467 
8 : 45 − 9 : 00 13.0570 12.7650 12.9253 13.1873 12.5393 
9 : 00 − 9 : 15 13.2240 13.2300 13.6047 13.5970 13.5183 
9 : 15 − 9 : 30 13.8420 13.9233 14.0990 13.5940 13.9623 
9 : 30 − 9 : 45 14.2677 13.9353 13.6137 13.9620 13.8010 
9 : 45 − 10 : 00 12.4740 12.4783 12.3077 12.6440 12.4513 

Average T̄p 11.4282 11.3992 11.4358 11.5309 11.3827 
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Fig. 10. Travel time for different bus volumes 

We collect the travel times every 15 minutes using the 
proposed data-driven CACC algorithm through taking p = 4. 
For the purpose of comparison, we use the real XBL travel 
time data (field data) collected from the Lincoln Tunnel. It is 
depicted in Fig. 10 that the data-driven algorithm is able to 
save travel time for buses on the XBL. The volume of buses 
in the autonomous XBL is increased to observe the increase in 
travel time. It is checkable that the travel time is overall shorter 
than the present case (field) while the bus volume is increased 
by 30% from 6:15 AM to 9 AM. For the period 9-10 AM, 
since the current field bus volume is already at capacity, the 
proposed CACC algorithm does not produce as much benefit 
as before. During this hour, the travel time becomes close to 
the present case when the bus volume is increased by 20%. 
The maximum travel time when the bus volume is increased 
by 20% (16.1933 minutes) is comparable with the maximum 
field travel time (16.0977 minutes) from 9 AM to 10 AM. 

TABLE II
 
COMPARISON OF AVERAGE TRAVEL TIMES UNDER DIFFERENT VOLUMES
 

Case Average Travel Time [min] 

Field 13.0073 
Data-Driven CACC 11.3946 

15% increase in Vol. Data-Driven CACC 12.2828 
20% increase in Vol. Data-Driven CACC 12.5711 
30% increase in Vol. Data-Driven CACC 13.0805 
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Fig. 11. Velocities of the vehicular platoon 

Tab. II illustrates the corresponding average travel time for 
different volumes of buses under the proposed approach. The 
average travel time of field data is 13.0073 minutes, which 
is close to that of the data-driven CACC algorithm with 30% 
increase in bus volume, i.e. 13.0805 minutes. For the purpose 
of comparison, we use PID control algorithm in [10]. It shows 
in Fig. 10 that the bus volume was increased by 20% under 
PID control. The proposed data-driven CACC method is able 
to further improve the traffic conditions for the whole corridor. 

Last but not least, we select a platoon of four buses. Let the 
leader begin to decelerate from a steady-state velocity 30m/s 
to another steady-state 25m/s at t = 50s. Fig. 11 depicts the 
response of the whole platoon, showing that all the vehicles 
can smoothly track the new desired velocity without overshoot. 

V. CONCLUSIONS 

In this paper, a data-driven cooperative adaptive cruise 
control (CACC) method is proposed for controlling a fleet of 
autonomous buses on the exclusive bus lane of the Lincoln 
Tunnel corridor by means of reinforcement learning and 
optimal control theories. The proposed control method is able 
to increase the traffic throughput and save the travel time by 
reducing the impact of the human drivers and by removing the 
assumption on the exact knowledge of the vehicle dynamics. 

The proposed data-driven method performs better than the 
PID control method used in [10] from both theoretical and 
experimental perspectives. Theoretically, the proposed method 
can ensure the stability of the connected bus systems in the 
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presence of unknown vehicle dynamics. Note that stability 
is a critically important factor in ensuring the safety of 
vehicles. Moreover, the proposed method yields an optimal 
controller with respect to a predefined cost. A key strategy 
of the proposed distributed controller scheme is the use of 
a vehicle-to-vehicle communication network such that each 
autonomous vehicle can communicate with multiple vehicles 
in the communication range. These observations show that 
the proposed method can improve transient performance for 
a closed-loop, connected bus system when compared with 
existing vehicle control methods. This contributes to smoother 
traffic flow and shorter travel times. The Paramics microscopic 
traffic simulation results show that, under the proposed control 
method, the travel times of buses in the autonomous exclusive 
bus lanes are close to the present day travel times when the 
bus demand is increased by 30%. Compared with the earlier 
PID method in [10], we further increase the traffic flow by 
10%. 

Future work includes developing advanced CACC methods 
for a connected bus system when nonlinear models are used, 
for mixed human-driven and autonomous vehicle environ­
ments, and for a vehicular network with changing topology. 
Future work also includes collecting more field data using au­
tomated image processing techniques and developing a novel 
application programming interface to improve the performance 
of the micro-simulation model. 
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lence. He was the founding director of the Rutgers Intelligent Transportation 
Systems (RITS) laboratory. His research interests include development of 
simulation models of large scale complex transportation systems, advanced 
technology and sensing applications for Intelligent Transportation Systems, 
modeling and evaluation of traffic incident and emergency management 
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